Intersubband decay of 1-D exciton resonances in carbon nanotubes.
نویسندگان
چکیده
We have studied intersubband decay of E22 excitons in semiconducting carbon nanotubes experimentally and theoretically. Photoluminescence excitation line widths of semiconducting nanotubes with chiral indicess (n,m) can be mapped onto a connectivity grid with curves of constant (n - m) and (2n + m). Moreover, the global behavior of E22 line widths is best characterized by a strong increase with energy irrespective of their (n-m)mod(3) = +/-1 family affiliation. Solution of the Bethe-Salpeter equations shows that the E22 line widths are dominated by phonon assisted coupling to higher momentum states of the E11 and E12 exciton bands. The calculations also suggest that the branching ratio for decay into exciton bands vs free carrier bands, respectively is about 10:1.
منابع مشابه
Determining the Chiral Index of Semiconducting Carbon Nanotubes Using Photoconductivity Resonances
We utilize photoconductivity spectroscopy to identify the unique chiral structure of individual carbon nanotubes (CNTs). Peaks in photoconductivity are measured throughout the visible and near-IR wavelength ranges. Photoconductivity peaks associated with individual CNTs are referenced against existing Rayleigh scattering measurements to uniquely identify chiral indices. We find close agreement ...
متن کاملExciton resonances quench the photoluminescence of zigzag carbon nanotubes.
We show that the photoluminescence intensity of single-walled carbon nanotubes is much stronger in tubes with large chiral angles--armchair tubes--because exciton resonances make the luminescence of zigzag tubes intrinsically weak. This exciton-exciton resonance depends on the electronic structure of the tubes and is found more often in nanotubes of the +1 family. Armchair tubes do not necessar...
متن کاملProbing Exciton Dynamics of Semiconducting Single-Walled Carbon Nanotubes Using Photon Echo Spectroscopy
Three-pulse photon echo peak shifts of single-walled carbon nanotubes were recorded at 975 nm, showing an initial value of 26 fs, a dominant decay time of 59 fs and an oscillatory frequency of 282 cm"'.
متن کاملThe role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes.
We perform Monte Carlo simulations of the time-resolved, spatially resolved, and integrated photoluminescence from a nanotube to investigate the role of the nanotube length L and defects using an exciton random-walk and defect-induced quenching model. When nonradiative decay is due solely to diffusion quenching, the quantum efficiency is approximately proportional to L2 at low quantum efficienc...
متن کاملUltrafast spectroscopy of excitons in single-walled carbon nanotubes.
We studied the femtosecond dynamics of photoexcitations in films containing semiconducting and metallic single-walled carbon nanotubes (SWNTs), using various pump-probe wavelengths and intensities. We found that confined excitons and charge carriers with subpicosecond dynamics dominate the ultrafast response in semiconducting and metallic SWNTs, respectively. Surprisingly, we also found from th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2008